

Multi-physical model for tire/road contact – the effect of surface texture

A. K. SHARMA, M. Bouteldja, V. Cerezo

2nd European Friction Workshop 23-24 May 2019, Nantes

Cerema Centre-Est

24 - 05 - 2019

Content

- Introduction
- State of art
- Research objectives
- Flow chart of model
- New multi physical tire model
- Results and validation
- Conclusion

Introduction

- Main Issues related to tire-road interaction
 - Safety

State of art

2nd European Friction Workshop 23-24 May 2019, Nantes

IFSTTAR

Research objective

Develop a tire-road interaction model which can take account the impact of parameters effecting friction and rolling resistance to provide precise contact forces

Road properties, stiffness, speed as mechanical parameters Temperature as thermal parameters Water height as hydrodynamic parameters

Flow chart of model

New multi physical tire model

- Mechanical model
 - Extension of classical brush model
 - Tread is modeled with finite number of bristles in contact
 - Maxwell 3 parameter model is used
 - Forces calculated with deformation of these parameters

$$F_{M}^{t} = F_{M}^{ve} = \sum f_{bristles}^{ve}(M = x, y, z)$$

* Pacejka, H,2002 ** Davari M, 2015

New multi physical tire model

- Control
 - Deflection ≤ 0 : Bristle not in contact
 - $Fz \le 0$: Bristle not in contact
- Dynamic friction model

$$\mu_x(v_{slid,x}) = \mu_{c,x} + \frac{\mu_{s,x} - \mu_{c,x}}{1 + |v_{slid,x}/v_{str,x}|^{2.5}}$$
$$\mu_y(v_{slid,y}) = \mu_{c,y} + \frac{\mu_{s,y} - \mu_{c,y}}{1 + |v_{slid,y}/v_{str,y}|^{2.5}}$$

- Sliding forces
 - Calculated using SPM

New multi physical tire model

- Thermal model
 - Heat Generation
 - Due to tire/road tangential interaction and tire cyclic deformation during rolling
 - Heat Exchange
 - With the external environment due t thermal conduction between the tread and the road , convections of the surface and the inner liner layers respectively
 - Heat conduction
 - Between the tire layer due to the temperature gradients

$$m_{c}c_{v} \frac{dT_{carcass}}{dt} = P_{SEL,c} + k_{c}(T_{tread} - T_{carcass}) * s_{t} + P_{ambient,carcass}$$

$$m_t c_t \ \frac{dT_{tread}}{dt} = P_{SEL,t} + P_{Friction \ forces} + P_{conduction} + P_{ambient,tread}$$

*P=Power flux

谷 Cerema

IFSTTAR

Simulation results(1/3)

• Comparison with classical brush model

Simulation results(2/3)

• Example : temperature evolution as a function of speed

Simulation results(3/3)

 Contact area as a function of macro texture (Fz = 4kN, Vx = 60Km/h)

 Evolution of the contact area as a function of speed

Cerema

IFSTTAR

Sensitivity study(1/2)

Cerema

Sensitivity study(2/2)

Experimental design

Experimental design

Sensor Specification

- Accuracy-±1°C
- Operate in ambient temperatures from 0°C to 70°C

Experiment Condition

- 1. At constant velocity ≈50km/h
- 2. Accelerating from 0km/h to 115km/h and brake to 0km/h.

Experimental result(1/4)

Experiment Condition

- 1. At constant velocity ≈52km/h
- 2. Straight line motion on piste E1-E2

Experimental result(2/4)

Comparison of simulation and experimental results of tread surface temperature

Experimental result(3/4)

Experiment Condition

- 1. Accelerating from 0km/h to 100km/h and braking to 0Km/h
- 2. Straight line motion on piste E1-E2

Experimental result(4/4)

Comparison of simulation and experimental results of tread surface temperature

Conclusion

- Multi physical tire model is presented
 - Mechanical model with multiple contact point
 - Thermal model and its integration is presented
 - Impact of road texture is taken into account
- Validation
 - Numerical comparison
 - Experimental comparison
- Future objectives
 - Integration of hydrodynamic model
 - Implement on full vehicle model

Thank you for your attention

Cerema – SACIM Ifsttar- EASE

25 Avenue François Mitterrand, 69500 Bron, France www.centre-est.cerema.fr www.ifsttar.fr anshul-kumar.sharma@cerema.fr

Cerema Centre-Est