

IFSTTAR

J. Gerthoffert, V. Cerezo, M. Thiery, M. Bouteldja, M-T. Do

2nd European Pavement Friction Workshop 23-24 May 2019, Nantes

Introduction

Ice and 5 mm of dry snow

Ice

Standing water Dry snow over compacted snow

3

What will aircraft braking performances be on such runways?

Introduction

1 – Reverse thrust 2 – Aerodynamic drag

Can aircraft braking coefficient be predicted from the Longitudinal Friction Coefficient?

Research methodology

Static and dynamic friction coefficients

Prediction of aircraft braking coefficient

Friction model

Friction model

Prediction of aircraft braking coefficient

Experimental data

Extraction of JWRFMP data base

Aircraft	Dry	Wet	Dry snow (<3 mm)	Dry snow (>3 mm) or dry snow (any depth) over compacted snow	Slush	Jce	Dry snow over ice
Falcon 20	1	0	0	18	0	5	6
Dornier 328	0	2	0	0	0	0	0
Dash 8	2	5	3	11	3	8	14
B727	0	0	0	6	0	0	0
B737	0	0	0	4	0	1	0
B757	0	0	0	5	0	0	0

Dash 8

Dornier 328

Falcon 20

Conclusion

Multi-scale model of wheel/water/runway system applied to IMAG and aircraft

Brush model adapted to include the effect of water

Relation between ground friction coefficient and aircraft braking performances improved compared to the state of the art

Physical model

Thank you for your attention !

Jonathan.gerthoffert@cerema.fr www.cerema.fr